• Ultrafast Excited-State Dynamics of Donor-Acceptor Biaryls: Comparison between Pyridinium and Pyrylium Phenolates
    R. Letrun, M. Koch, M.L. Dekhtyar, V.V. Kurdyukov, A.I. Tolmachev, W. Rettig and E. Vauthey
    The Journal of Physical Chemistry A, 117 (49) (2013), p13112-13126
    DOI:10.1021/jp409646g | unige:32101 | Abstract | Article HTML | Article PDF
 
The excited-state dynamics of two donor–acceptor biaryls that differ by the strength of the acceptor, a pyridinium or a pyrylium moiety, have been investigated using a combination of steady-state solvatochromic absorption, ultrafast fluorescence, as well as visible and infrared transient absorption spectroscopies. The negative solvatochromic behavior of pyridinium phenolate indicates that the permanent electric dipole moment experiences a decrease upon S1 ← S0 excitation, implying that the ground state possesses more zwitterionic character than the excited state. In contrast, pyrylium phenolate exhibits a weakly positive solvatochromic behavior corresponding to a small increase in the dipole moment upon excitation, implying more zwitterionic character in the excited than the ground state. Both compounds are therefore situated at different sides of the cyanine-limit structure, which has equally polar ground and excited states. Despite these differences, both molecules exhibit qualitatively similar excited-state properties. They are characterized by a very short fluorescence lifetime, increasing from about 1 to 20 ps, when varying solvent viscosity from 0.4 to 11 cP. There are, however, characteristic differences between the two compounds: The excited-state lifetimes of the pyrylium dye are shorter and also depend somewhat on polarity. The ensemble of spectroscopic data can be explained with a model where the emitting Franck–Condon excited state relaxes upon twisting around the single bond between the aryl units to a point where the excited- and ground-state surfaces are very close or intersect. After internal conversion to the ground state, the distorted molecule relaxes back to its equilibrium planar configuration, again largely dependent upon solvent viscosity. However, in this case, the kinetics for the pyrylium dye are slower than for the pyridinium dye and the polar solvent-induced acceleration is significantly stronger than in the excited state. This difference of kinetic behavior between the two compounds is a direct consequence of the change of the electronic structure from anormal to an overcritical merocyanine evidenced by steady-state spectroscopy.
  
The kinetics of the dual fluorescence of several derivatives of dimethylaminobenzonitrile (DMABN) has been compared using fs-fluorescence upconversion experiments. Variation of the size and twist angle of the donor (dialkylamino group) suggest a large amplitude solvent-viscosity controlled diffusional twisting motion towards larger twist angles as the rate limiting step. Large rate differences were observed for an ester group as acceptor. Temperature dependent studies indicate that these differences are not connected with different activation barriers but with changes in the Arrhenius preexponential factor. It is argued that conical intersections along the reaction path can bring about these entropy changes.
  • Molecular Conformation and Excited-State Dipole Moments of Di- and Tetramethylaminobenzonitrile (DMABN and TMABN)
    W. Rettig, D. Braun, P. Suppan, E. Vauthey, K. Rotkiewicz, R. Luboradzki and K. Suwinska
    Journal of Physical Chemistry, 97 (51) (1993), p13500-13507
    DOI:10.1021/j100153a014 | unige:3026 | Abstract | Article PDF
The conformational analysis of TMABN by three different methods X-ray analysis, photoelectron spectroscopy, and UV molar absorption coefficient yields a twist angle of the dimethylamino group of 60-70° in the ground state, whereas DMABN is not far from planar in qualitative agreement with the predictions from force field calculations (QCFF/PI and MM3). Dipole moment determinations by the thermochromic method agree with those from other methods (solvatochromism, electrochromism and time resolved microwave absorption) in that the excited state dipole moment of TMABN is very large, as well as that of the TICT state of DMABN. Its value increases somewhat with solvent polarity. This is explained by a nuclear polarizability model. The force field calculations are used to predict twist angle values for various sterically hindered DMABN derivatives

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024